Abstract

In this paper, we consider a non-overlapping domain decomposition method for solving optimal boundary control problems governed by parabolic equations. The whole domain is divided into non-overlapping subdomains, and the global optimal boundary control problem is decomposed into the local problems in these subdomains. The integral mean method is utilized to present an explicit flux calculation on the inter-domain boundary in order to communicate the local problems on the interface between subdomains. We establish the fully parallel and discrete schemes for solving these local problems. A priori error estimates in $$L^2$$ -norm are derived for the state, co-state and control variables. Finally, we present numerical experiments to show the validity of the schemes and verify the derived theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.