Abstract

The early events in the alfalfa-Rhizobium meliloti symbiosis include deformation of epidermal root hairs and the approximately concurrent stimulation of cell dedifferentiation and cell division in the root inner cortex. These early steps have been studied previously by analysis of R. meliloti mutants. Bacterial strains mutated in nodABC, for example, fail to stimulate either root hair curling or cell division events in the plant host, whereas exopolysaccharide (exo) mutants of R. meliloti stimulate host cell division but the resulting nodules are uninfected. As a further approach to understanding early symbiotic interactions, we have investigated the phenotype of a non-nodulating alfalfa mutant, MnNC-1008 (NN) (referred to as MN-1008). Nodulating and non-nodulating plants were inoculated with wild-type R. meliloti and scored for root hair curling and cell divisions. MN-1008 was found to be defective in both responses. Mutant plants inoculated with Exo- bacteria also showed no cell division response. Therefore, the genetic function mutated in MN-1008 is required for both root hair curling and cell division, as is true for the R. meliloti nodABC genes. These observations support the model that the distinct cellular processes of root hair curling and cell division are triggered by related mechanisms or components, or are causally linked.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.