Abstract

Parametric studies and corresponding results are presented using a rheological model based on the limiting shear stress and possible occurrence of slip planes. The model is applied to elastohydrodynamically lubricated line contacts with smooth surfaces and isothermal conditions. A few investigations are carried out where different parameters are varied. The first study investigates the influence on the film thickness distribution due to a variation of the maximum Hertzian pressure when the slide-to-roll ratio is constant. The second study investigates how far the non-Newtonian region propagates at low slide-to-roll ratios for a few different values of the Hertzian pressure. The results show that it is a remarkably small slide-to-roll ratio necessary to cause slip planes in a large part of the Hertzian contact zone. A third study regards the influence of the entrainment velocity on the film thickness generation at different slide-to-roll ratios. Finally some rheological parameters are varied. First, only the limiting shear stress at atmospheric pressure ( τ 0) is varied, and second, a few different lubricants are studied, each with their own set of rheological parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.