Abstract
In the paper [S.P. Rui and C.X. Xu, A smoothing inexact Newton method for nonlinear complementarity problems, J. Comput. Appl. Math. 233 (2010), pp. 2332–2338], the authors proposed an inexact smoothing Newton method for nonlinear complementarity problems (NCP) with the assumption that F is a uniform P function. In this paper, we present a non-monotone inexact regularized smoothing Newton method for solving the NCP which is based on Fischer–Burmeister smoothing function. We show that the proposed algorithm is globally convergent and has a locally superlinear convergence rate under the weaker condition that F is a P 0 function and the solution of NCP is non-empty and bounded. Numerical results are also reported for the test problems, which show the effectiveness of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.