Abstract

A phase space description of Schroźdinger dynamics is provided in terms of a quantum kinetic formalism relying on the introduction of an appropriate extension of the well-known Wigner transform, also accounting for time delocalizations. This “space-time Wigner distribution,” built up in the framework of two-time correlation functions, is shown to be governed by a non-Markovian, integro-differential equation of convolution type. Its utility in investigating long time dynamics of quantum systems is also discussed and illustrated with some examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call