Abstract

I show that the sumof independent random variables converges in distribution when suitably normalised, so long as theXksatisfy the following two conditions:μ(n)= E |Xn|is comparable withE|Sn| for largen,andXk/μ(k) converges in distribution. Also I consider the associated birth processX(t) = max{n:Sn≦t} when eachXkis positive, and I show that there exists a continuous increasing functionv(t) such thatfor some variableYwith specified distribution, and for almost allu. The functionv, satisfiesv(t) =A(1 +o(t)) logt. The Markovian birth process with parameters λn= λn, where 0 < λ < 1, is an example of such a process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.