Abstract

The operating conditions of municipal solid waste incineration (MSWI) are influenced by manipulated variables, such as the feed rate, primary air, and grate speed, as well as non-manipulated variables, such as municipal solid waste (MSW) particle size, mixing coefficient, emissivity, moisture content, and the ratio of C to O. Based on the actual data of an MSWI plant in Beijing, a non-manipulated variable single-factor analysis of solid-phase combustion in the furnace was carried out based on the biorthogonal numerical simulation experiment. First, a solid-phase combustion analysis of the MSWI process was performed for non-manipulated variables, with the main non-manipulated variables determined. Then, based on FLIC 2.3c software, the numerical model was established under benchmark operating conditions. Based on the biorthogonal experiment, several groups of numerical model inputs were designed to generate mechanism data in multi-operating conditions. Finally, a multi-condition numerical simulation experiment was used to study solid-phase combustion under different conditions and analyze non-manipulated variables. The simulation results showed that the maximum solid temperature was 1360 K under the benchmark operating condition and ranged from 1120 to 1470 K under five conditions. Large-size particles and large emissivity were beneficial to solid-phase combustion, while high moisture content and a large mixing coefficient weakened combustion. The results provide support for the subsequent optimal control of the whole MSWI process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call