Abstract

This study focuses on the influence on fatigue behaviour of the surface integrity of a steel connecting rod. The component is hot-forged and shot-blasted, producing a complex surface state with large surface defects and high residual stresses. In a prior study, the surface was thoroughly characterized and fatigue tests were performed. Several different surface states were analysed in order to quantify the influence of the various surface aspects. These tests showed that the forging defects and the residual stresses are the most influential aspects of the surface. The goal of this paper is to develop an approach capable of taking into account the influence of both these aspects on fatigue behaviour.Two methods were developed. First, using surface scans of the fatigue specimens, the forging defects were fitted with ellipsoids so as to determine their size and shape. This allows to easily compare the numerous defects and test various criteria in order to identify the critical defect of each specimen. The second method used was the finite element simulation of the defects based on real topography scans. Using a non-local approach based on the theory of critical distances, the simulations were used to accurately predict the influence of the defects’ geometry. The residual stress profiles were integrated in the simulations using Dang Van’s criterion. The predictions are accurate and show the importance of taking into account the real defect geometry when estimating the fatigue strength.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.