Abstract

Cooperative adaptive cruise control (CACC) has a strong potential to improvise highway traffic capacity and ease traffic disturbances. Extensive exploration is not carried out in the area of CACC for a cut-in maneuver. Contemporary control strategies proposed for CACC cannot regulate the peaking of control input and thus the acceleration/deceleration of following vehicles when applied for various real traffic scenarios. This paper aims to develop a non-linear disturbance observer-based sliding mode control to control a CACC system for various traffic scenarios. The proposed observer estimates the uncertainty present in the actuator dynamics and the preceding vehicle’s acceleration as the lumped disturbance at the same time, it adjusts the observer gain to alleviate the peaking of control input. The stability of individual vehicles and the string stability of vehicle platoon are derived The performance of the proposed scheme is validated with various traffic scenarios, that is, cut-in maneuver, cut-out maneuver, and non-zero initial conditions. The effectiveness of the proposed scheme is demonstrated by comparing it with a linear disturbance observer-based control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call