Abstract

The linear mixing model has been considered previously in most of the researches which are devoted to the blind source separation (BSS) problem. In practice, a more realistic BSS mixing model should be the non-linear one. In this paper, we propose a non-linear BSS method, in which a two-layer perceptron network is employed as the separating system to separate sources from observed non-linear mixture signals. The learning rules for the parameters of the separating system are derived based on the minimum mutual information criterion with conjugate gradient algorithm. Instead of choosing a proper non-linear functions empirically, the adaptive kernel density estimation is used in order to estimate the probability density functions and their derivatives of the separated signals. As a result, the score function of the perceptron's outputs can be estimated directly. Simulations show good performance of the proposed non-linear BSS algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.