Abstract

A new adaptive scheme is proposed in this paper to design excitation controllers for feedback linearized models of synchronous generators in multimachine power systems in order to ensure the stability during large disturbances. The proposed scheme uses speed deviations of synchronous generators, readily available measured physical properties of multimachine power systems, to make all generators within a power network as partially linearized as well as to provide more damping. An adaptive scheme is then used to estimate all unknown parameters which appear in the partial feedback linearizing excitation controllers in order to avoid parameter sensitivities of existing feedback linearization techniques. The overall stability of multimachine power systems is ensured through the excitation control and parameter adaptation laws. The Lyapunov stability theory is used to theoretically analyse the stability of multimachine power systems with the proposed scheme. Simulation studies are presented to evaluate the performance of the proposed excitation control scheme for two different test systems by different operating conditions including short‐circuit faults on key locations along with variations in parameters for a large duration. Furthermore, comparative results are presented to highlight the superiority of the proposed adaptive partial feedback linearizing excitation control scheme over an existing partial feedback linearizing excitation controllers.

Highlights

  • Modern power networks are being more complicated due to the expansion of existing networks to meet the increasing power demand along with the integration of renewable energy sources [1]

  • These stability issues can be tackled by excitation systems of synchronous generators as excitation controllers provide additional damping and the overall performance of the system depends on the ability of providing such damping under different operating conditions [4, 5]

  • This paper aims to cover these gaps by utilizing the benefits of both partial feedback linearizing and adaptive controllers

Read more

Summary

INTRODUCTION

Modern power networks are being more complicated due to the expansion of existing networks to meet the increasing power demand along with the integration of renewable energy sources [1]. The same applies for other parameters within the system and the faults within a system change the dynamic characteristics of the system These existing feedback linearizing excitation control laws are the functions stability sensitive parameters along with some physical properties of synchronous generators and the overall stability of multimachine power systems is severely affected with the variations of these parameters [23, 24]. All stability sensitive parameters in such PFBLECs can be modelled as unknown in order to estimate through parameter adaptation laws and the adaptive control scheme can be incorporated with the partial feedback linearization scheme to tackle the stability of power systems against large disturbances in a faster way while considering different operating conditions. The superiority of APFBLECs are analysed over an EPBLEC

DYNAMICAL MODELLING OF MULTIMACHINE POWER SYSTEMS
PARTIAL FEEDBACK LINEARIZED MODELS OF MULTIMACHINE POWER SYSTEMS
PROPOSED APFBLEC DESIGN
PERFORMANCE EVALUATION OF THE DESIGNED EXCITATION CONTROLLER
Variations in parameters
Performance evaluation on a three-area seven machine 29-bus power system
G1 G3 G1 G3 G1 G3 G1
CONCLUSION
Findings
25. Australian Energy Market Operator

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.