Abstract

Scorpion venoms are mixtures of proteins, peptides and small molecular compounds with high specificity for ion channels and are therefore considered to be promising candidates in the venoms-to-drugs pipeline. Transcriptomes are important tools for studying the composition and expression of scorpion venom. Unfortunately, studying the venom gland transcriptome traditionally requires sacrificing the animal and therefore is always a single snapshot in time. This paper describes a new way of generating a scorpion venom gland transcriptome without sacrificing the animal, thereby allowing the study of the transcriptome at various time points within a single individual. By comparing these venom-derived transcriptomes to the traditional whole-telson transcriptomes we show that the relative expression levels of the major toxin classes are similar. We further performed a multi-day extraction using our proposed method to show the possibility of doing a multiple time point transcriptome analysis. This allows for the study of patterns of toxin gene activation over time a single individual, and allows assessment of the effects of diet, season and other factors that are known or likely to influence intraindividual venom composition. We discuss the gland characteristics that may allow this method to be successful in scorpions and provide a review of other venomous taxa to which this method may potentially be successfully applied.

Highlights

  • Venoms are complex mixtures of bioactive compounds called toxins that have evolved on more than 30 different occasions in the animal kingdom [1,2]

  • In this study we introduce a new method for the generation of venom gland transcriptomes by using extracted scorpion venom from the Vietnam forest scorpion (Heterometrus laoticus) (Fig 1)

  • This paper describes a new way of generating a scorpion venom gland transcriptome, without sacrificing the animal, using RNA found in extracted venom

Read more

Summary

Introduction

Venoms are complex mixtures of bioactive compounds called toxins that have evolved on more than 30 different occasions in the animal kingdom [1,2]. Toxins are often highly specific in their activity and can induce a wide range of pharmacological effects [2,3,4,5,6]. A non-lethal method for studying scorpion venom gland transcriptomes. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call