Abstract

Titanium dioxide (TiO(2)) thin film was deposited on the surface of the light addressable potentiometric sensor (LAPS) to modify the sensor surface for the non-labeled detection of DNA molecules. To evaluate the effect of ultraviolet (UV) treatment on the silanization level of TiO(2) thin film by 3-aminopropyltriethoxysilane (APTS), fluorescein isothiocyanate (FITC) was used to label the amine group on the end of APTS immobilized onto the TiO(2) thin film. We found that, with UV irradiation, the silanization level of the irradiated area of the TiO(2) film was improved compared with the non-irradiated area under well-controlled conditions. This result indicates that TiO(2) can act as a coating material on the biosensor surface to improve the effect and efficiency of the covalent immobilization of biomolecules on the sensor surface. The artificially synthesized probe DNA molecules were covalently linked onto the surface of TiO(2) film. The hybridization of probe DNA and target DNA was monitored by the recording of I-V curves that shift along the voltage axis during the process of reaction. A significant LAPS signal can be detected at 10 micromol/L of target DNA sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call