Abstract

Typically, an optimal smoothing parameter in a penalized spline regression is determined by minimizing an information criterion, such as one of the C p , CV and GCV criteria. Since an explicit solution to the minimization problem for an information criterion cannot be obtained, it is necessary to carry out an iterative procedure to search for the optimal smoothing parameter. In order to avoid such extra calculation, a non-iterative optimization method for smoothness in penalized spline regression is proposed using the formulation of generalized ridge regression. By conducting numerical simulations, we verify that our method has better performance than other methods which optimize the number of basis functions and the single smoothing parameter by means of the CV or GCV criteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.