Abstract
Zebrafish is an emerging alternative model in behavioral and neurological studies for pharmaceutical applications. However, little is known regarding the effects of noise exposure on laboratory-grown zebrafish. Accordingly, this study commenced by exposing zebrafish embryos to loud background noise (≥200 Hz, 80 ± 10 dB) for five days in a microfluidic environment. The noise exposure was found to affect the larvae hatching rate, larvae length, and swimming performance. A microfluidic platform was then developed for the sorting/trapping of hatched zebrafish larvae using a non-invasive method based on light cues and acoustic actuation. The experimental results showed that the proposed method enabled zebrafish larvae to be transported and sorted into specific chambers of the microchannel network in the desired time frame. The proposed non-invasive trapping method thus has potentially profound applications in drug screening.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.