Abstract

We present a space-homogeneous, time-inhomogeneous random walk that behaves as if it were a simple random walk ind dimensions, whered is not necessarily an integer. Analogues of the Local Central Limit Theorem, Zero-One Laws, distance, angle, asymptotics on the Green's function and the hitting probability, recurrence and transience, and results about the intersection behavior of the random walk paths are obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.