Abstract
BackgroundThe guidelines for applying individual adjustments to macaques according to the severity of behavioral symptoms during 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment were provided to reproduce stable chronic Parkinsonism in a recent study (Potts et al., 2014). But, since there are insufficient guidelines regarding objective severity criteria of individual symptoms for adjustments of MPTP treatment, it is difficult to develop MPTP-induced chronic non-human primate (NHP) models with stable symptoms. New methodThe individual adjustments of MPTP administration based on results of automatic quantification of global activity (GA) using a video-based tracking system were applied to develop MPTP-PD model. Low-dose (0.2 mg/kg) intramuscular injection was repeated continuously until GA was lower than 8% of baseline Parkinsonian behavior scores. The positron emission tomography imaging were used to follow the longitudinal course of Parkinson’s disease (PD). ResultsSignificant reductions in GA and dopamine transporter activity, along with significant increases in Parkinsonian behavior scores were found from 4 to 48 weeks following the first administration. GA was correlated with the Parkinsonian behavior score. The dopamine transporter activity was correlated with GA and the Parkinsonian behavior score. However, it was not correlated with the total dose of MPTP. Damage of dopaminergic neuronal systems in the basal ganglia was confirmed by immunohistochemistry and Western blot. Comparison with existing methodThis study reinforces previous guidelines regarding production of NHP models with stable Parkinsonian symptoms. ConclusionsThis novel strategy of MPTP administration based on global activity evaluations provides an important conceptual advance for the development of chronic NHP Parkinsonian models.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.