Abstract
Bimodal, poly(dimethylsiloxane) (PDMS) networks containing a large mole fraction of very short chains have been shown to be unusually tough elastomers. The purpose of this investigation is to understand the rubber elasticity behavior of these bimodal networks. As a first approach, we have assumed that the average chain deformation is affine. This deformation, however, is partitioned nonaffinely between the long and short chains so that the free energy is minimized. Gaussian statistics are used for the long chains. The distribution function for the short chains is found from Monte Carlo calculations. This model predicts an upturn in the stress-strain curve, the steepness depending on the network composition, as is observed experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.