Abstract
AbstractThis work is devoted to a vast extension of Sanov’s theorem, in Laplace principle form, based on alternatives to the classical convex dual pair of relative entropy and cumulant generating functional. The abstract results give rise to a number of probabilistic limit theorems and asymptotics. For instance, widely applicable non-exponential large deviation upper bounds are derived for empirical distributions and averages of independent and identically distributed samples under minimal integrability assumptions, notably accommodating heavy-tailed distributions. Other interesting manifestations of the abstract results include new results on the rate of convergence of empirical measures in Wasserstein distance, uniform large deviation bounds, and variational problems involving optimal transport costs, as well as an application to error estimates for approximate solutions of stochastic optimization problems. The proofs build on the Dupuis–Ellis weak convergence approach to large deviations as well as the duality theory for convex risk measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.