Abstract

Most continuum-based models are constructed based on thermodynamic equilibrium assumption. Nevertheless, the time scale in high-pressure injection is extremely short, and whether there is sufficient time to reach the equilibrium state has not been confirmed. In this study, a non-equilibrium evaporation model is proposed to investigate the non-equilibrium effect on spray evolutions. First, a non-equilibrium isobaric-isothermal flash is established based on the molecular dynamic simulations and Peng-Robinson equation of state. Then, a non-equilibrium evaporation model incorporating the non-equilibrium isobaric-isothermal flash model is implemented into the Eulerian-Lagrangian spray model. Good agreements with the measured penetration lengths of sprays have been achieved. The results reveal that the evaporation time of a single droplet and the liquid penetration length of spray are underestimated by 7.3 % and 8 %, respectively, due to an overestimation in the interfacial vapor molar fraction under the equilibrium assumption at 800 K and 2.0 K. Besides, the non-equilibrium effect is found to significantly alter the formation of lean and moderately fuel-rich mixture, while it only has a slight influence on the fuel-rich mixtures. Finally, the thermodynamic non-equilibrium effect in sprays is suggested to be considered when the ambient pressure exceeds 3.0 MPa or the ambient temperature surpasses 800 K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call