Abstract

In this paper, we present a modeling framework for a class of multiphase chemical systems based on non-equilibrium thermodynamics. Compartmental modeling is used to establish the dynamic properties of liquid–vapor systems operating far from thermodynamic equilibrium. In addition to the bulk-phase molar/energetic dynamics, interface transport processes yield to algebraic constraints in the model description. The irreversible system is thus written as a system of differential-algebraic equations (DAEs). The non-equilibrium liquid–vapor DAE system is shown to be of index one. A local stability analysis for the model shows that the equilibrium state is unstable for non-isobaric operation regimes, whereas numerical evidence shows that isobaric operation regimes are stable. To extend the stability analysis, internal entropy production for the irreversible flash-drum is presented as a Lyapunov function candidate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.