Abstract

This paper documents the experimental development of a new spandrel-to-column moment connection detail for progressive collapse resistance in precast concrete building frames. This study focuses on a 10-story prototype precast concrete frame building with perimeter special moment frames (SMF) that are subjected to a ground-floor column removal. The experimental subassembly represents a spandrel-to-column connection on the perimeter SMF near the middle of the building face (i.e. not at the corners). The connection is non-emulative and utilizes unbonded high-strength steel post-tensioning (PT) bars which pass through ducts in the column and are anchored to the spandrels via bearing plates. The proposed design strives for construction simplicity, avoids field welding and/or grouting, and maximizes ductility by allowing the high strength steel bars to act as structural “fuses” when yielding. A full-scale quasi-static pushdown test is performed on two variants of the proposed connection: one with higher moment-rotation capacity and limited ductility, and another with lower capacity and higher ductility. The results show that the connection can reliably achieve its design yield capacity, performs well under service level demands, and can achieve moderate-to-high ductility. The experimental results are then applied to a system-level computational model of the prototype building frame under a column removal scenario. The results of a nonlinear dynamic analysis demonstrate that the system can arrest progressive collapse in the event of a single column loss scenario when either variant of the proposed connection is considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.