Abstract

Covariance matrix forecasts for portfolio optimization have to balance sensitivity to new data points with stability in order to avoid excessive rebalancing. To achieve this, a new robust orthogonal GARCH model for a multivariate set of non-Gaussian asset returns is proposed. The conditional return distribution is multivariate generalized hyperbolic and the dispersion matrix dynamics are driven by the leading factors in a principle component decomposition. Each of these leading factors is endowed with a univariate GARCH structure, while the remaining eigenvalues are kept constant over time. Joint maximum likelihood estimation of all model parameters is performed via an expectation maximization algorithm, and is applicable in high dimensions. The new model generates realistic correlation forecasts even for large asset universes and captures rising pairwise correlations in periods of market distress better than numerous competing models. Moreover, it leads to improved forecasts of an eigenvalue-based financial systemic risk indicator. Crucially, it generates portfolios with much lower turnover and superior risk-adjusted returns net of transaction costs, outperforming the equally weighted strategy even under high transaction fees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.