Abstract
In this paper we present a non-deterministic call-by-need (untyped) lambda calculus λ nd with a constant choice and a let-syntax that models sharing. Our main result is that λ nd has the nice operational properties of the standard lambda calculus: confluence on sets of expressions, and normal order reduction is sufficient to reach head normal form. Using a strong contextual equivalence we show correctness of several program transformations. In particular of lambda-lifting using deterministic maximal free expressions. These results show that λ nd is a new and also natural combination of non-determinism and lambda-calculus, which has a lot of opportunities for parallel evaluation.An intended application of λ nd is as a foundation for compiling lazy functional programming languages with I/O based on direct calls. The set of correct program transformations can be rigorously distinguished from non-correct ones. All program transformations are permitted with the slight exception that for transformations like common subexpression elimination and lambda-lifting with maximal free expressions the involved subexpressions have to be deterministic ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.