Abstract

The existing chaotic systems exhibit chaos degradation phenomena because of the limited chaotic precision in the real number field. In response to this deficiency, this paper proposes a chaotic bits XOR system (CBXS) in the integer field satisfying Devaney’s chaos. That is, CBXS has the property of sensitivity of initial value, topological transitivity, and periodic point density. Then, a series of chaotic and random test results illustrate that the sequences generated by CBXS with linear feedback shift register (LFSR) in the finite field GF(2) have good random and chaotic performance. It can overcome the chaos degradation problem because it is generated in the integer field and can avoid the limited precision in the real number field. Finally, we employ the proposed CBXS to image encryption with the optimized Arnold’s transformation. The experimental results verify that even after simple encryption, the cipher image still exhibits good encryption effect and efficiency, which illustrates the effectiveness of CBXS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call