Abstract

Due to its high-performance broadcast capability, M-ary phase-shift-keying (MPSK) direct sequence code division multiple access (DS/CDMA) technique is widely used in terrestrial and satellite communications to provide wired/wireless services such as audio broadcasting, video broadcasting and high-speed data transmission. However, both coherent and noncoherent MPSK modulation schemes are sensitive to the carrier frequency offset (CFO) incurred by transceiver oscillator instability and/or Doppler shift. In this paper, a nondata-aided and nonphase-based automatic frequency control (AFC) method for MPSK DS/CDMA transceivers is proposed. Different from phase-based AFC approaches, which utilize the frequency-offset-induced phase rotation and suffer from the modulo- 2/spl pi/ phase ambiguity, the proposed method exploits the frequency-offset-induced power degradation and has a wide tracking range of twice the symbol rate, which is independent of the phase keying number as well as the spreading code length. To shorten the tracking time of AFC, the improved steepest descent algorithm and the reshaped S curve are employed. Due to its wide tracking range, short tracking time and low implementation complexity, the proposed AFC method is attractive for terrestrial and satellite-based digital broadcasting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.