Abstract
In this study, the design and testing of a linear bearing using near-field acoustic levitation (NFAL) phenomenon was performed. A pair of Langevin transducers placed at either end of a beam with either a right-angle V-shaped or Λ-shaped cross-section was used to excite and absorb ultrasonic flexural vibrations transmitted along the length of the beam from one transducer to the other. The beam was used as a guide rail, supporting a slider formed from a short length of beam with the same cross-section. This arrangement provides a small and inexpensive non-contact bearing with magnetic field immunity and without generating a magnetic field, both useful characteristics for clean room and precision actuators. The slider was levitated by the vibration of the beam up to 100μm, and was moved successfully in either direction by traveling waves transmitted along the guide rail. In a 300-mm long prototype, objects up to 160g (60.5kg/m2) were levitated and transported. A transportation speed of 138mm/s was obtained for a slider of 90g. The stiffness of the levitation was found to be 1.1N/μm/m2 for this prototype.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.