Abstract

In this paper, a new, noncoherent architecture for global navigation satellite system tracking loops is proposed and analyzed. A noncoherent phase discriminator, able to extend the integration time beyond the bit duration, is derived from the maximum likelihood principle and integrated into a Costas loop. The discriminator is noncoherent in the sense that the bit information is removed by using a nonlinear operation. By jointly using such a discriminator and noncoherent integrations at the delay lock loop level, a fully noncoherent architecture, able to operate at low carrier-power-to-noise density ratio (C/N 0), is obtained. The algorithms proposed have been tested by means of live GPS data and compared with existing methodologies, resulting in an effective solution for extending the total integration time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.