Abstract
We prove a non-archimedean Dugundji extension theorem for the spaces C*(X, C* (X, K) of continuous bounded functions on an ultranormal space X with values in a non-archimedean non-trivially valued complete field K. Assuming that K is discretely valued and Y is a closed subspace of X we show that there exists an isometric linear extender T: C* (Y, K) → K* (X, K) if X is collectionwise normal or Y is Lindelöf or K is separable. We provide also a self contained proof of the known fact that any metrizable compact subspace Y of an ultraregular space X is a retract of X.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.