Abstract

Polyp vascular patterns are key to categorizing colorectal cancer malignancy. These patterns are typically observed in situ from specialized narrow-band images (NBI). Nonetheless, such vascular characterization is lost from standard colonoscopies (the primary attention mechanism). Besides, even for NBI observations, the categorization remains biased for expert observations, reporting errors in classification from 59.5% to 84.2%. This work introduces an end-to-end computational strategy to enhance in situ standard colonoscopy observations, including vascular patterns typically observed from NBI mechanisms. These retrieved synthetic images are achieved by adjusting a deep representation under a non-aligned translation task from optical colonoscopy (OC) to NBI. The introduced scheme includes an architecture to discriminate enhanced neoplastic patterns achieving a remarkable separation into the embedding representation. The proposed approach was validated in a public dataset with a total of 76 sequences, including standard optical sequences and the respective NBI observations. The enhanced optical sequences were automatically classified among adenomas and hyperplastic samples achieving an F1-score of 0.86%. To measure the sensibility capability of the proposed approach, serrated samples were projected to the trained architecture. In this experiment, statistical differences from three classes with a ρ-value <0.05 were reported, following a Mann–Whitney U test. This work showed remarkable polyp discrimination results in enhancing OC sequences regarding typical NBI patterns. This method also learns polyp class distributions under the unpaired criteria (close to real practice), with the capability to separate serrated samples from adenomas and hyperplastic ones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call