Abstract

Background: This study constructed and demonstrated a model to predict the overall survival (OS) of newly diagnosed distant metastatic cervical cancer (mCC) patients.Methods: The SEER (Surveillance, Epidemiology, and End Results) database was used to collect the eligible data, which from 2010 to 2016. Then these data were separated into training and validation cohorts (7:3) randomly. Cox regression analyses was used to identify parameters significantly correlated with OS. Harrell's Concordance index (C-index), calibration curves, and decision curve analysis (DCA) were further applied to verify the performance of this model.Results: A total of 2,091 eligible patients were enrolled and randomly split into training (n = 1,467) and validation (n = 624) cohorts. Multivariate analyses revealed that age, histology, T stage, tumor size, metastatic sites, local surgery, chemotherapy, and radiotherapy were independent prognostic parameters and were then used to build a nomogram for predicting 1 and 2-year OS. The C-index of training group and validation group was 0.714 and 0.707, respectively. The calibration curve demonstrated that the actual observation was in good agreement with the predicted results concluded by the nomogram model. Its clinical usefulness was further revealed by the DCAs. Based on the scores from the nomogram, a corresponding risk classification system was constructed. In the overall population, the median OS time was 23.0 months (95% confidence interval [CI], 20.5–25.5), 12.0 months (95% CI, 11.1–12.9), and 5.0 months (95% CI, 4.4–5.6), in the low-risk group, intermediate-risk group, and high-risk group, respectively.Conclusion: A novel nomogram and a risk classification system were established in this study, which purposed to predict the OS time with mCC patients. These tools could be applied to prognostic analysis and should be validated in future studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.