Abstract

To construct a nomogram based on subjective CT signs and artificial intelligence (AI) histogram parameters to identify invasiveness of lung adenocarcinoma presenting as pure ground-glass nodules (pGGNs) and to evaluate its diagnostic performance. 187 patients with 228 pGGNs confirmed by postoperative pathology were collected retrospectively and divided into pre-invasive group [atypical adenomatous hyperplasia (AAH) and adenocarcinoma in situ (AIS)] and invasive group [minimally invasive adenocarcinoma (MIA) and invasive adenocarcinoma (IAC)]. All pGGNs were randomly assigned to training cohort (n = 160) and validation cohort (n = 68). Nomogram was developed using subjective CT signs and AI-based histogram parameters by logistic regression analysis. The diagnostic performance was evaluated by receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) curve. The nomogram was constructed with nodule shape, 3D mean diameter, maximum CT value, and skewness. It showed better discriminative power in differentiating invasive lesions from pre-invasive lesions with area under curve (AUC) of 0.849 (95% CI 0.790-0.909) in the training cohort and 0.831 (95% CI 0.729-0.934) in the validation cohort, which performed better than nodule shape (AUC 0.675, 95% CI 0.609-0.741), 3D mean diameter (AUC 0.762, 95% CI 0.688-0.835), maximum CT value (AUC 0.794, 95% CI 0.727-0.862), or skewness (AUC 0.594, 95% CI 0.506-0.682) alone in training cohort (for all, P < 0.05). For pulmonary pGGNs, the nomogram based on subjective CT signs and AI histogram parameters had a good predictive ability to discriminate invasive lung adenocarcinoma from pre-invasive lung adenocarcinoma, and it has the potential to improve diagnostic efficiency and to help the patient management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call