Abstract
To develop a clinical-radiomics nomogram based on clinical information and radiomics features to predict the prognosis of percutaneous balloon compression (PBC) for the treatment of trigeminal neuralgia (TN). The retrospective study involved clinical data from 149 TN patients undergoing PBC at Zhongnan Hospital, Wuhan University from January 2018 to January 2022. The free open-source software 3D Slicer was used to extract all radiomic features from the intraoperative X-ray balloon region. The relationship between clinical information and TN prognosis was analyzed by univariate logistic analysis and multivariate logistic analysis. Using R software, the optimal radiomics features were selected using the least absolute shrinkage and selection operator (Lasso) algorithm. A prediction model was constructed based on the clinical information and radiomic features, and a nomogram was visualized. The performance of the clinical radiomics nomogram in predicting the prognosis of PBC in TN treatment was evaluated using the area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA). A total of 149 patients were eventually included. The clinical factors influencing the prognosis of TN in univariate analysis were compression severity score and TN type. The lasso algorithm Max-Relevance and Min-Redundancy(mRMR) was used to select two predictors from 13 morphology-related radiomics features, including elongation and surface-volume ratio. A total of 4 predictors were used to construct a prediction model and nomogram. The AUC was 0.886(95% confidence interval (CI), 0.75 to 0.96), indicating that the model's good predictive ability. DCA demonstrated the nomogram's high clinical applicability. Clinical-radiomics nomogram constructed by combining clinical information and morphology-related radiomics features have good potential in predicting the prognosis of TN for PBC treatment. However, this needs to be further studied and validated in several independent external patient populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.