Abstract

Language comprehension, as with all other cases of the extraction of meaningful structure from perceptual input, takes places under noisy conditions. If human language comprehension is a rational process in the sense of making use of all available information sources, then we might expect uncertainty at the level of word-level input to affect sentence-level comprehension. However, nearly all contemporary models of sentence comprehension assume clean input---that is, that the input to the sentence-level comprehension mechanism is a perfectly-formed, completely certain sequence of input tokens (words). This article presents a simple model of rational human sentence comprehension under noisy input, and uses the model to investigate some outstanding problems in the psycholinguistic literature for theories of rational human sentence comprehension. We argue that by explicitly accounting for input-level noise in sentence processing, our model provides solutions for these outstanding problems and broadens the scope of theories of human sentence comprehension as rational probabilistic inference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.