Abstract
This paper studies how to learn accurate ranking functions from noisy training data for information retrieval. Most previous work on learning to rank assumes that the relevance labels in the training data are reliable. In reality, however, the labels usually contain noise due to the difficulties of relevance judgments and several other reasons. To tackle the problem, in this paper we propose a novel approach to learning to rank, based on a probabilistic graphical model. Considering that the observed label might be noisy, we introduce a new variable to indicate the true label of each instance. We then use a graphical model to capture the joint distribution of the true labels and observed labels given features of documents. The graphical model distinguishes the true labels from observed labels, and is specially designed for ranking in information retrieval. Therefore, it helps to learn a more accurate model from noisy training data. Experiments on a real dataset for web search show that the proposed approach can significantly outperform previous approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.