Abstract

We propose to combine short-term block-based fuzzy support vector machine (FSVM) learning and long-term dynamic semantic clustering (DSC) learning to bridge the semantic gap in content-based image retrieval. The short-term learning addresses the small sample problem by incorporating additional image blocks to enlarge the training set. Specifically, it applies the nearest neighbor mechanism to choose additional similar blocks. A fuzzy metric is computed to measure the fidelity of the actual class information of the additional blocks. The FSVM is finally applied on the enlarged training set to learn a more accurate decision boundary for classifying images. The long-term learning addresses the large storage problem by building dynamic semantic clusters to remember the semantics learned during all query sessions. Specifically, it applies a cluster-image weighting algorithm to find the images most semantically related to the query. It then applies a DSC technique to adaptively learn and update the semantic categories. Our extensive experimental results demonstrate that the proposed short-term, long-term, and collaborative learning methods outperform their peer methods when the erroneous feedback resulting from the inherent subjectivity of judging relevance, user laziness, or maliciousness is involved. The collaborative learning system achieves better retrieval precision and requires significantly less storage space than its peers. © 2011 Wiley Periodicals, Inc. © 2011 Wiley Periodicals, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.