Abstract
This article investigates the large sample properties of the variance, weights, and risk of high-dimensional portfolios where the inverse of the covariance matrix of excess asset returns is estimated using a technique called nodewise regression. Nodewise regression provides a direct estimator for the inverse covariance matrix using the least absolute shrinkage and selection operator to estimate the entries of a sparse precision matrix. We show that the variance, weights, and risk of the global minimum variance portfolios and the Markowitz mean-variance portfolios are consistently estimated with more assets than observations. We show, empirically, that the nodewise regression-based approach performs well in comparison to factor models and shrinkage methods. Supplementary materials for this article are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.