Abstract

A node-based smoothed point interpolation method (NS-PIM) is formulated to analyze 3-D steady-state thermoelastic problems subjected to complicated thermal and mechanical loads. Gradient smoothing technique with node-based smoothing domains is utilized to modify the gradient fields and to perform the numerical integration required in the weak form formulation. Numerical results show that NS-PIM can achieve more accurate solutions even when the 4-node tetrahedral mesh is used compared to the finite-element method (FEM) using the same mesh, especially for strains and hence stresses. Most importantly, it can produce an upper bound solution of the exact solution in energy norm for both temperature and stress fields when a reasonably fine mesh is used. Together with FEM, we now for the first time have a simple means to obtain both upper and lower bounds of the exact solution to complex thermoelastic problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.