Abstract

A molecular imprint polymer (MIP) biosensor has been developed to determine caffeic acid in misai kucing (Orthosiphon stamineus) samples. The simulation of HyperChem 8.0 software gave a suitable template and functional monomer ratio for the MIP preparation. The MIPs were prepared by non-covalent bulk polymer approach. The analytical performance of MIP and NIP studies were based on the frequency change of mass sensitive quartz crystal microbalance sensor. The MIP biosensor showed good sensitivity to caffeic acid from 1.5 ng/ml - 12.5 ng/ml with a R2 value of 0.98 whereas NIP sensor showed very low response. The caffeic acid in O. stamineus extract and two commercial products were quantified using the MIP biosensor

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.