Abstract

One of the consequences of the black-hole "no-hair" theorem in general relativity (GR) is that gravitational radiation (quasi-normal modes) from a perturbed Kerr black hole is uniquely determined by its mass and spin. Thus, the spectrum of quasi-normal mode frequencies have to be all consistent with the same value of the mass and spin. Similarly, the gravitational radiation from a coalescing binary black hole system is uniquely determined by a small number of parameters (masses and spins of the black holes and orbital parameters). Thus, consistency between different spherical harmonic modes of the radiation is a powerful test that the observed system is a binary black hole predicted by GR. We formulate such a test, develop a Bayesian implementation, demonstrate its performance on simulated data and investigate the possibility of performing such a test using previous and upcoming gravitational wave observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call