Abstract

BackgroundThere is a wide debate in the literature about whether N2/P3 effects in no-go trials reflect the inhibition of an intended action, or the absence of a negative movement-related potential typical of go trials. The aim of this study was to provide an objective measure of the suppression of irrelevant information (in a conjoined selective visual attention task) under conditions that were perfectly comparable from the viewpoint of the motoric processes involved.MethodsTwenty-nine right-handed students took part in the study. Their EEGs were recorded from 128 scalp sites while they viewed gratings of four different spatial frequencies (from 0.75 to 6 c/deg) randomly flashed in the four upper and lower quadrants of the visual field. The tasks consisted of attending and responding to a conjunction of spatial frequency and space location. Intermediate frequencies (1.5 and 3 c/deg) acted as distracters or lures. Analysis of the ERPs elicited by the same physical stimulus, close in spatial frequency to the actual target and falling within the attended quadrant (pseudo-target) vs. a non-target location, allowed us to identify the time course and neural bases of brain activation during the suppression of irrelevant information.ResultsFAs were on average 9% for pseudo-targets and 0.2% for other types of lures, indicating that the former were more difficult to suppress. Target-related ERP components (occipito/temporal selection negativity, posterior P3b and precentral motor N2) were greater to pseudo-targets than other distracters. A large prefrontal negativity (370–430 ms) was also identified, much larger to pseudo-targets than non-targets (and absent in response to real targets), thus reflecting response inhibition and top-down cognitive control processes.ConclusionA LORETA inverse solution identified the neural generators of this effect in the left dorsolateral prefrontal cortex (DLPF), left and right fusiform gyri and bilateral superior temporal cortices. The tentative hypothesis is advanced that these activations might reflect the modulatory effects exerted by the fronto/temporal circuit for the suppression of irrelevant information.

Highlights

  • There is a wide debate in the literature about whether N2/P3 effects in no-go trials reflect the inhibition of an intended action, or the absence of a negative movement-related potential typical of go trials

  • The false alarms (FAs) rate was extremely low and ranged from 0.2% to all types of non-targets to an average of 8.77% for pseudo-targets falling at the attended location (L+) and within the target spatial frequency bandwidth (F+/-), as illustrated in Figure 1 (6.63% for the attend-0.75 condition, and 10.90% for the attend-6 condition)

  • The fact that gratings falling at the attended location and within the target's spatial frequency bandwidth elicited 40 times more FAs than other types of lures indicates how similar they were to targets and how difficult they were to suppress at both the cognitive and response preparation levels

Read more

Summary

Introduction

There is a wide debate in the literature about whether N2/P3 effects in no-go trials reflect the inhibition of an intended action, or the absence of a negative movement-related potential typical of go trials. The aim of this study was to provide an objective measure of the suppression of irrelevant information (in a conjoined selective visual attention task) under conditions that were perfectly comparable from the viewpoint of the motoric processes involved. One of the main problems in investigating cognitive or motor suppression processes in go/no-go tasks is that, while go trials are associated with response motor preparation and execution, no-go trials are not, so it is difficult to establish which components are related to response/. The fronto/central P3 to no-go trials has been associated with response inhibition, generated in the anterior cingulate cortex [10]. The functional significance of N2/P3 effects is debated, since they may represent purely motor inhibition, detection of response conflict, differences in attentional allocation or cognitive inhibition processes

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call