Abstract

We introduce and analyze a Nitsche-based domain decomposition method for the solution of hypersingular integral equations. This method allows for discretizations with non-matching grids without the necessity of a Lagrangian multiplier, as opposed to the traditional mortar method. We prove its almost quasi-optimal convergence and underline the theory by a numerical experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.