Abstract

Bilayers prepared from sorbitan fatty acid esters (Span) have been frequently used for delivery of drugs including flavonoids. We applied molecular dynamics simulation to characterize the structure of a sorbitan monostearate (Span 60) bilayer in complex with three representative flavones, a subclass of flavonoids. At a low concentration, unsubstituted flavone, the most hydrophobic member, was able to flip over and cross the bilayer with a large diffusion coefficient. At a high concentration, it was accumulated at the bilayer center resulting in a phase separation. The leaflets of the bilayer were pushed in the opposite directions increasing the membrane thickness. Order parameter of the stearate chain of Span 60 was not affected significantly by unsubstituted flavone. In contrast, chrysin with hydroxylated ring A was lined up with the acyl chains of Span 60 with its hydroxyl group facing the membrane surface. Neither flipping nor transbilayer movement were allowed. Diffusion coefficient was only 15–25% of that of unsubstituted flavone and order parameter decreased with the concentration of chrysin. Luteolin, the most hydroxylated member, interacted mainly with the headgroup of Span 60 and assumed many different orientations without crossing the bilayer. Unlike chrysin and unsubstituted flavone the bilayer integrity was disrupted at 50 mol% luteolin. These behaviors and structures of flavones in a Span 60 bilayer can be accounted for by their hydrophobicity and sites of hydroxylation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call