Abstract
SUMMARYThe non-canonical NF-κB signaling cascade is essential for lymphoid organogenesis, B-cell maturation, osteoclast differentiation, and inflammation in mammals1,2, whereas dysfunction of this system is associated with human diseases, including immunological disorders and cancer3–6. While controlled expression of NF-κB Inducing Kinase (NIK) is the rate-limiting step in non-canonical NF-κB activation2,7, mechanisms of inhibition remain largely unknown. Here, we report the identification of the sine oculis homeobox homolog family transcription factors SIX1 and SIX2 as essential inhibitory components of the non-canonical NF-κB signaling pathway. The developmentally silenced SIX-proteins are reactivated in differentiated macrophages by NIK-mediated suppression of the ubiquitin proteasome pathway. Consequently, SIX1 and SIX2 target a subset of inflammatory gene promoters and directly inhibit RelA and RelB trans-activation function in a negative feedback circuit. In support of a physiologically pivotal role for SIX-proteins in host immunity, human SIX1 transgene suppressed inflammation and promoted the recovery of mice from endotoxic shock. In addition, SIX1 and SIX2 protected RAS/p53-driven lung adenocarcinoma cells from inflammatory cell death induced by SMAC-mimetic chemotherapeutic agents, small-molecule activators of the non-canonical NF-κB pathway. Collectively, our study reveals a NIK-SIX signaling axis that fine-tunes inflammatory gene expression programs under both physiological and pathological conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.