Abstract

Sleep is a fundamental physiological process necessary for efficient cognitive functioning especially in relation to memory consolidation and executive functions, such as attentional and switching abilities. The lack of sleep strongly alters the connectivity of some resting-state networks, such as default mode network and attentional network. In this study, by means of magnetoencephalography (MEG) and specific cognitive tasks, we investigated how brain topology and cognitive functioning are affected by 24 h of sleep deprivation (SD). Thirty-two young men underwent resting-state MEG recording and evaluated in letter cancellation task (LCT) and task switching (TS) before and after SD. Results showed a worsening in the accuracy and speed of execution in the LCT and a reduction of reaction times in the TS, evidencing thus a worsening of attentional but not of switching abilities. Moreover, we observed that 24 h of SD induced large-scale rearrangements in the functional network. These findings evidence that 24 h of SD is able to alter brain connectivity and selectively affects cognitive domains which are under the control of different brain networks.

Highlights

  • Sleep is an active physiological process essential for wellbeing and for cognitive functioning

  • A counterintuitive scenario was observed in the task switching (TS) where performance appeared slower at T0 than at T1, as shown by both higher reaction times (RT) and switch cost” (SC)

  • The number of errors remained unchanged between the two sessions, so it cannot be considered that the performance had improved in absolute terms

Read more

Summary

Introduction

Sleep is an active physiological process essential for wellbeing and for cognitive functioning. It promotes learning and memory as well as executive functions [1]. In this line, many electrophysiological studies have been evidenced that a good quality of sleep is associated with better performances in task assessment working memory and set-shifting abilities as well as in that related to planning, cognitive flexibility, and attention [2, 3]. EEG and magnetic resonance-based evidence indicate that sleep loss affects primarily the frontal lobes with serious repercussions on executive functions.

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.