Abstract
The highest-temperature, defining fixed point of the International Temperature Scale of 1990 (ITS-90) is the copper freezing point (1,084.62°C). Many international metrology institutes are investigating the use of transition temperatures of metal–carbon alloys as references for the calibration of temperature measuring instruments above the copper point, making it possible to reduce the calibration uncertainty of pyrometers in radiation thermometry and thermocouples in contact thermometry. This research is being performed mainly by radiation thermometry laboratories that have developed specific cells with blackbody cavities containing relatively small quantities of metal–carbon alloys. Parallel to this, some laboratories have also developed cells with these same alloys, but of a different design, suitable for the calibration of thermocouples. This report concerns the development of a nickel–carbon eutectic cell (≅1,329°C) at Inmetro, with which either a radiation thermometer or thermocouple can be calibrated. The measurements of the temperature of this cell were performed using the reference radiation thermometer of the Pyrometry Laboratory and Pt/Pd thermocouples that were constructed, stabilized, and calibrated at the Thermometry Laboratory. Details of the cell fabrication, as well as the instrumentation used for the measurements are given. The results of a comparison between the two different types of measurement are reported, including the uncertainty budgets of both methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.