Abstract
Since conventional graphite-based anode possesses a low capacity, seeking for high-capacity anode candidates becomes significant for constructing emerging Li-ion batteries. Herein, we present a composite anode prepared using a hydrothermal method, which consists of dense NiO nanoflakes in situ growing on reduced graphene oxide (rGO) sheets. The rGO sheets within the NiO/rGO composite provide a conductive frame that enables rapid charge transfer, while the in situ anchoring of NiO nanoflakes on rGO reduces the agglomeration. We found that the appropriate loading of NiO in the composite is also significant. The NiO/rGO composite anode exhibits a high capacity of 1068 mAh g−1 after 100 cycles at 0.1 A g−1. In addition, the capacity remains 870 mAh g−1 when the current density is increased to a high rate of 2 A g−1, indicating a good rate performance for potential applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.