Abstract

Understanding mechanistic details of the nickel-catalyzed coupling reactions of Csp3 alcohol derivatives is key to developing selective reactions of this widely prevalent functional group. In this manuscript, we utilize a combination of experimental data and DFT studies to define the key intermediates, stereochemical outcome, and competing pathways of a nickel-catalyzed cross-electrophile coupling reaction of 1,3-dimesylates. Stereospecific formation of a 1,3-diiodide intermediate is achieved in situ by the Grignard reagent. The overall stereoablative stereochemical outcome is due to a nickel-catalyzed halogen atom abstraction with a radical rebound that is slower than epimerization of the alkyl radical. Finally, lifetimes of this alkyl radical intermediate are compared to radical clocks to enhance the understanding of the lifetime of the secondary alkyl radical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.