Abstract

Voltage-dependent Ca(2+) channels trigger and control important cellular processes like neurotransmitter release and secretion, long-term potentiation, and gene expression in excitable cells. During retinal signal perception and processing, presynaptic Ca(2+) channels facilitate neurotransmitter release in photoreceptors and bipolar neurons, at nonspiking synapses which generate graded potentials. The nature of voltage-gated Ca(2+) channels involved in retinal signal transduction is investigated in the present report by recording the electroretinogram (ERG) from the isolated and perfused bovine retina. Transcripts of the E/R- and T-type Ca(2+) channels are detected by RT-PCR. Using the Ca(2+) channel antagonists (+/-)-isradipine, NiCl(2), mibefradil, and SNX-482 results in either stimulatory or inhibitory effects on the ERG b-wave amplitude. On the transcript level, mRNA is detected for the E/R-type and a T-type voltage-gated Ca(2+) channel containing Ca(v)2.3 and Ca(v)3.1 as ion-conducting subunits, respectively. Blocking of the E/R-type Ca(2+) channels by NiCl(2) (10 microM) and SNX-482 (30 nM) contributes to the stimulatory effect, whereas antagonism of T-type as well as L-type Ca(2+) channels meditates the inhibitory action on the b-wave amplitude. Thus, a novel function for E/R-type voltage-gated Ca(2+) channels is probably associated with the visual signal transduction in the mammalian retina.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.