Abstract

In developing anion exchange membrane fuel cells (AEMFCs), the sluggish hydrogen oxidation reaction (HOR) under alkaline condition is one of the major challenges to be overcome. A screening process using the simple electrodeposition method suggests Ni-29Mo as the most promising composition among the prepared Ni-M (M= Co, Fe, Zn, Cr, Mo, W) and Ni-xMo (x = 22∼33 at%) samples. Experimental analyses and theoretical computations demonstrate that the Ni-29Mo is composed of metallic nickel and molybdenum oxide (Ni-MoOx) domains and the hydrogen adsorption energy on metallic Ni is tailored in the presence of MoO2 towards the optimal value. The Ni-MoOx composite catalyst shows a superior HOR activity (1.12 mA/cm2 @ 20 mVRHE), outperforming carbon supported platinum (Pt/C, 1.01 mA/cm2 @ 20 mVRHE), the best HOR catalyst. An AEMFC fabricated using Ni-29Mo nanoparticles as an anode catalyst exhibits excellent performance, approximately half of the Pt/C counterpart cell, demonstrating practical applicability of the catalyst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call